
Benchmarks for Non-linear Continuous System Safety

Verification ∗

Andrew Sogokon1, Taylor T. Johnson2, and Khalil Ghorbal3

1 University of Texas at Arlington, Arlington, TX, USA
andrew.sogokon@uta.edu

2 University of Texas at Arlington, Arlington, TX, USA
taylor.johnson@gmail.com

3 Inria, Rennes, Bretagne, France
khalil.ghorbal@gmail.com

Abstract

Safety verification of hybrid dynamical systems relies crucially on the ability to reason about reach-

able sets of continuous systems whose evolution is governed by a system of ordinary differential equa-

tions (ODEs). Verification tools are often restricted to handling a particular class of continuous systems,

such as e.g. differential equations with constant right-hand sides, or systems of affine ODEs. More re-

cently, verification tools capable of working with non-linear differential equations have been developed.

The behavior of non-linear systems is known to be in general extremely difficult to analyze because

solutions are rarely available in closed-form. In order to assess the practical utility of the various veri-

fication tools working with non-linear ODEs it is very useful to maintain a set of verification problems.

Similar efforts have been successful in other communities, such as automated theorem proving, SAT

solving and numerical analysis, and have accelerated improvements in the tools and their underlying

algorithms. We present a set of 65 safety verification problems featuring non-linear polynomial ODEs

and for which we have proofs of safety. We discuss the various issues associated with benchmarking

the currently available verification tools using these problems.

1 Introduction

For verifying safety properties of hybrid systems, it is crucial to have the means of reasoning
about safety properties of purely continuous systems that determine state evolution inside the
operating modes.

In computer science, emphasis has traditionally been placed on working with hybrid systems
in which the continuous modes are governed by relatively simple ODEs. For instance, safety
verification of systems with ODEs possessing constant right-hand sides and right-hand sides
bounded within real intervals is aided by the fact that reachable sets of such continuous systems
can be computed exactly. More recently, progress has been made on verifying safety in systems
with linear and affine continuous dynamics (with tools such as PHAVer [13] and SpaceEx [14]).
This is a much more difficult problem, since reachable sets of linear ODEs cannot in general
be phrased in a decidable theory, which is only known to be possible for some special classes of
systems [21, 16].

It is a well-known fact that non-linear ODEs can exhibit behaviour that is impossible under
affine or linear dynamics [18]. Their expressive power allows for modelling very rich dynamic
phenomena, but comes at the price of making the reachability analysis much more difficult. A
major obstacle is the fact that solutions to non-linear ODEs cannot in general be obtained as

∗

Safety Verification Benchnmarks Sogokon, Johnson, Ghorbal

closed-form expressions, i.e. finite expressions in terms of polynomials and elementary functions
such as exp, sin, cos, ln, etc. Hybrid systems with non-linear ODEs are not at all uncommon in
control theory; this is especially true of the class of piecewise-smooth systems (sometimes called
variable structure systems), which are used in the design of sliding mode controllers [10].

Recently, a number of tools and approaches have been developed that enable safety veri-
fication of non-linear systems (e.g. [7, 20, 30, 29, 28, 23, 17, 15, 34]). The methods currently
in existence differ in a number of aspects; for instance, the level of automation they provide,
the generality of system specifications, etc. These important (and at times subtle) differences
make the tools difficult to compare objectively. However, what makes a meaningful comparison
truly difficult is the current lack of a unified collection of safety verification problems, which
can presently only be found scattered among various papers and journal articles.

We believe this problem can be addressed by collecting verification benchmarks and con-
verting them to a single standardized input format. While this effort is only a first step towards
a more ambitious goal — that of creating a database of benchmarks that can be used for a
comprehensive assessment of the existing and future verification tools — we feel it is important
to initiate the process of gathering interesting verification problems and making them available
to the community. Similar efforts have been successfully undertaken before in fields such as
automated theorem proving (e.g. the TPTP problem library [4]), SAT solving (where compe-
titions, e.g. [2], have led to drastic improvements in the performance of SAT solvers in the last
two decades) and numerical analysis [36], resulting in improved quality of the tools and their
underlying algorithms.

Contributions

We (I) provide a set of 65 safety verification problems featuring non-linear systems, for all of
which the safety property is known to hold. Further, we (II) discuss the current challenges
in comparing verification tools working with non-linear continuous dynamics and (III) outline
ideas for addressing some of these difficulties.

2 Benchmarks

We have collected a set of 65 safety verification problems featuring non-linear ODEs, which
we have gathered from existing papers treating the problem of unbounded time safety verifi-
cation [23, 9, 11, 34] and invariant generation for non-linear systems (e.g. [6]). The problems
we have collected all share the property of having proofs of safety that were obtained using
the methods presented in the pertinent papers (or having proofs that are immediate from the
results described therein).

In general, in order to fully state a safety verification problem, one requires four pieces of
information:

1. The system of ODEs, written using vector notation as ~̇x = f(~x), where f : Rn → Rn.

2. The mode invariant, denoted H ⊆ Rn, which defines the region where the system may
evolve along the solution to the system of ODEs.

3. The set of initial states X0 ⊆ Rn.

4. The set of unsafe (or forbidden) states Xu ⊆ Rn.

Remark Note that it is sufficient to consider autonomous ODEs, i.e. those in which the
right-hand side does not depend explicitly on the independent time variable t, because one

2

Safety Verification Benchnmarks Sogokon, Johnson, Ghorbal

may always augment the system with ṫ = 1 and treat t as a state variable. Furthermore, in
many cases it is also sufficient to only consider polynomial problems because it is often possible
to re-cast safety verification problems with non-polynomial terms to problems only featuring
polynomial functions (see e.g. [24, 27]).

The problem is to show that it is impossible for the system to evolve into a forbidden state
~xu ∈ Xu from any initial state ~x0 ∈ X0 by following the solution ϕt(~x0) to the system of ODEs

~̇x = f(~x) for any time while it remains within the evolution constraint H. Formally, this may
be written down as

∀t ≥ 0. ∀~x0 ∈ X0. (∀τ ∈ [0, t]. ϕτ (~x0) ∈ H)→ ϕt(~x0) 6∈ Xu.

In bounded-time safety verification one is only interested in showing safety up to some finite
time bound T ≥ 0, i.e.

∀t ∈ [0, T]. ∀~x0 ∈ X0. (∀τ ∈ [0, t]. ϕτ (~x0) ∈ H)→ ϕt(~x0) 6∈ Xu.

Clearly, if the safety property holds for unbounded time, it is guaranteed for any fi-
nite time bound, but not conversely. Since all the problems we have gathered are non-
linear and have proofs of unbounded-time safety, we may designate this class of problems
NONLIN-UNBOUND-TIME-SAFE in order to distinguish it from other classes of problems that
we may wish to add later on, such as e.g. provably safe linear systems, or provably un-
safe systems, etc. In this section we will illustrate some of the safety verification prob-
lems featuring 2-dimensional ODEs. The full set of the 65 problems is available from
http://verivital.com/hyst/benchmark-nonlinear/

Example 2.1 (Non-linear example [9]). Dai et al. in [9] studied safety verification using barrier
certificates, illustrating their approach using the following system:

ẋ = 2x− xy,
ẏ = 2x2 − y.

The set of initial states is given by x2 + (y + 2) 2 ≤ 1 and the set of unsafe states is
x2 + (y − 1) 2 ≤ 9

100 (shown in green and red respectively in Fig. 1). The evolution constraint
is taken to be the real plane R2.

x

y

Figure 1: Non-linear system in the safety verification problem from [9].

3

http://verivital.com/hyst/benchmark-nonlinear/

Safety Verification Benchnmarks Sogokon, Johnson, Ghorbal

Example 2.2 (FitzHugh-Nagumo system example [6]). Ben Sassi et al. [6] reported a method
for generating polyhedral invariants for polynomial ODEs and applied it to the FitzHugh-
Nagumo system:

ẋ = −x
3

3
+ x− y +

7

8
,

ẏ =
2

25

(
x− 4y

5
+

7

10

)
.

With the knowledge of the invariant, by considering initial states that lie inside the invariant,

x

y

Figure 2: Safety verification in the FitzHugh-Nagumo system.

e.g. −1 ≤ x ≤ −0.5 ∧ 1 ≤ y ≤ 1.5 and letting −2.5 ≤ x ≤ −2 ∧ − 2 ≤ y ≤ −1.5 represent
the forbidden states, all of which lie entirely outside the invariant, one may conclude the safety
property. Fig 2 shows the phase portrait along with the initial and the unsafe states (in green
and red, respectively).

Example 2.3 ([34], ODE from [12], Ex. 10.15 (i)). In previous work [34], a non-linear ODE
from a textbook on the qualitative theory of planar ODEs [12]

x

y

Figure 3: Safety verification problem from [34].

ẋ = −42x7 + 68x6y − 46x5y + 258x4y + 156x3y + 50x2y + 20xy6 − 8y7,

ẏ = y
(
1110x6 − 220x5y − 3182x4y + 478x3y3 + 487x2y4 − 102xy5 − 12y6

)
,

4

Safety Verification Benchnmarks Sogokon, Johnson, Ghorbal

was used to create a safety verification problem where the initial states are given by
x > −1 ∧ x < − 3

4 ∧ y ≤
3
2 ∧ y ≥ 1 and the forbidden states satisfy the inequality x > y + 1

(shown respectively in green and red in Fig. 3).

2.1 Problem format

We have chosen to store our verification problems in a format used by the SpaceEx verification
tool for hybrid systems [14]. While SpaceEx currently cannot work with non-linearities, its
input format is sufficiently simple and convenient. A given problem in this format is stored in
two separate files

1. An .xml file storing the ODE ~̇x = f(~x) and the mode invariant H of the system.

2. A .cfg file detailing the initial set X0 and the set of forbidden states Xu.

For example, the verification problem described in Example 2.2, may be stored in the two files
shown in Fig. 4 and Fig. 5.

1 <?xml version ="1.0" encoding ="iso -8859 -1"? >
2 <sspaceex xmlns ="http ://www -verimag.imag.fr/xml -namespaces/sspaceex" version ="0.2" math="

SpaceEx">
3 <component id=" fitzhugh_nagumo_ben_sassi_girard_2">
4 <param name="x" type="real" local="false" d1="1" d2="1" dynamics ="any"/>
5 <param name="y" type="real" local="false" d1="1" d2="1" dynamics ="any"/>
6 <location id="1" name="p">
7 <invariant >true </invariant >
8 <flow >x ’==7/8+x-x^3/3-y & y ’==(2*(7/10+x-(4*y)/5))/25</flow >
9 </location >

10 </component >
11 </sspaceex >

Figure 4: FitzHugh-Nagumo system dynamics, illustrated in Fig. 2.

1 system = fitzhugh_nagumo_ben_sassi_girard_2
2 initially = "-1<=x & x<=-0.5 & 1<=y & y <=1.5"
3 forbidden = "-2.5<=x & x<=-2 & -2<=y & y<= -1.5"
4 output -variables = x,y
5 scenario = stc
6 directions = box
7 set -aggregation = "none"
8 sampling -time = 0.5
9 flowpipe -tolerance = 0.25

10 time -horizon = 9
11 iter -max = 4
12 output -format = GEN
13 verbosity = m
14 output -error = 0.001
15 rel -err = 1.0e-12
16 abs -err = 1.0e-15

Figure 5: SpaceEx configuration file specifying the initial and forbidden states.

3 Challenges

In using any significantly broad set of verification benchmarks, one faces a number of challenges
if one wishes to use them to compare the existing safety verification methods and tools. Firstly,

5

Safety Verification Benchnmarks Sogokon, Johnson, Ghorbal

in contrast to the world of SAT/SMT solving or automated theorem proving, verification of
continuous systems has not matured to the point where the community has agreed upon an
input standard that can be used to exchange problems (such as SMTLIB [3] or TPTP [4]).
Also, unlike with numerical analysis or simulation, general safety verification problems need
not have point initial conditions, but rather a set of initial states that may be uncountably
infinite, and not necessarily “nice” (e.g. may be disconnected, non-convex, unbounded, etc.).
Below we outline some important challenges that stand in the way of benchmarking existing
verification tools.

• Tools for bounded-time safety verification based on computing flowpipes enclosing reach-
able sets of non-linear ODEs, such as e.g. Flow∗, are often limited in the nature of the
initial and the forbidden sets of states. In particular, the underlying algorithms used in
these tools require the set of initial states to be bounded (unlike in Example 2.3); ideally
given by a hyper-rectangle (unlike Example 2.1). On the other hand, methods for auto-
matic unbounded-time safety verification based on searching for appropriate continuous
invariants (e.g. [28, 34]) are capable of working with much broader classes of initial and
forbidden regions. For instance, semi-algebraic initial regions that are unbounded, non-
convex, or whose description features a combination of conjunctions and disjunctions do
not present a problem.

• Tools that employ interval arithmetic often require bounds on the state variables of the
system (e.g. HSolver [31, 32], dReach [20]), which technically renders them inapplicable
to safety verification problems where the evolution constraint H is unbounded, e.g. given
by Rn.

• Certain tools (e.g. Flow∗) cannot work with sets described by strict inequalities (such as
the forbidden states in Example 2.3). While it would be sound to simply over-approximate
the closure of such sets by relaxing the inequalities to be non-strict, this step currently
needs to be performed manually by the user and (inevitably) affects the reachability anal-
ysis.

• The performance of tools often depends heavily on the user-specified options, such as e.g.
the fixed/adaptive time steps used for the verified integration, error tolerances, etc. It is
presently not apparent how one might automatically translate “good” settings from one
verification tool to another, or indeed automatically arrive at good settings for a particular
tool in the first place. Thus, some verification tools that are designed to be fully automatic
rely crucially on the user choosing the right settings, which is typically difficult for a non-
expert.

• Some unbounded-time verification methods (e.g. [30]) likewise require significant manual
input from the user, such as e.g. selecting templates for polynomial functions. It is yet
unclear how these methods can be meaningfully compared to methods that provide a
greater level of automation.

4 Outlook

Safety verification problems for non-linear systems are very useful for assessing the utility and
efficiency of invariant generation methods (e.g. [33, 35, 6, 28, 25, 37, 17, 34]), as well as tools
based on verified integration of ODEs (e.g [7, 26, 19, 20]). We are hopeful that maintaining and
further populating the set of verification benchmarks will result in improvements to the exist-
ing capabilities offered by the tools for both bounded and unbounded-time safety verification.

6

Safety Verification Benchnmarks Sogokon, Johnson, Ghorbal

Improvements in invariant generation would also greatly benefit deductive verification tools for
hybrid systems, such as theorem provers (e.g. [29, 15, 22]).

At least some of the challenges outlined in the previous section can potentially be addressed
using HyST [5], a source transformation tool for hybrid systems that takes as input a hybrid
system verification problem in the SpaceEx format and translates it into formats accepted by
other verification tools. In addition to translating between the various problem formats, HyST
is able to work with its internal representation of the verification problem through so-called
model transformation passes, which can address issues that affect particular verification tools.
For instance, currently HyST can add identity reset maps to transitions in hybrid automata,
split transition guards with disjunctions, etc. At present, HyST can translate problems into
formats accepted by Flow∗, dReach, HyCreate [1], HyComp [8] and SpaceEx. An interesting
future direction would be to extend it to also work with invariant generation tools and add model
transformation passes to soundly convert safety verification problems that currently cannot be
processed by some of the verification tools into a form that is amenable to analysis.

In collecting safety verification benchmarks it is profitable to find a useful classification. One
could separate verification problems for continuous systems into classes depending on certain
features, such as

• the type of continuous dynamics, e.g. constant/linear/non-linear,

• the dimensionality of the system (i.e. the number of state variables, |~x|),

• the type of safety verification (i.e. bounded versus unbounded time),

• the nature of the evolution constraint (i.e. bounded versus unbounded state space).

• the nature of the initial and forbidden set (bounded versus unbounded; if bounded, hyper-
rectangles versus more general sets),

• the nature of the verification problem itself (i.e. is the system safe or unsafe?)

Such a classification will certainly become important in the future as more verification problems
are gathered and added to our collection. Our initial set of 65 problems (which we tentatively
labelled NONLIN-UNBOUND-TIME-SAFE) belongs to one of the most general classes under this
scheme, since it makes few assumptions about the nature of the verification problem. This
generality makes it difficult to use the problems for benchmarking existing tools, but at the
same time serves to bring out their current limitations.

References

[1] HyCreate: A tool for overapproximating reachability of hybrid automata. http://stanleybak.

com/projects/hycreate/hycreate.html. Accessed: 2016-02-15.

[2] The international SAT competitions web page. http://www.satcompetition.org/. Accessed:
2016-02-15.

[3] SMT-LIB the satisfiability modulo theories library. http://smtlib.cs.uiowa.edu/. Accessed:
2016-02-15.

[4] The TPTP problem library for automated theorem proving. http://www.cs.miami.edu/~tptp/.
Accessed: 2016-02-15.

[5] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. HYST: a source transformation and
translation tool for hybrid automaton models. In Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control, HSCC’15, Seattle, WA, USA, April 14-16, 2015,
pages 128–133, 2015.

7

http://stanleybak.com/projects/hycreate/hycreate.html
http://stanleybak.com/projects/hycreate/hycreate.html
http://www.satcompetition.org/
http://smtlib.cs.uiowa.edu/
http://www.cs.miami.edu/~tptp/

Safety Verification Benchnmarks Sogokon, Johnson, Ghorbal

[6] M.A. Ben Sassi, A. Girard, and S. Sankaranarayanan. Iterative computation of polyhedral invari-
ants sets for polynomial dynamical systems. In Decision and Control (CDC), 2014 IEEE 53rd
Annual Conference on, pages 6348–6353, Dec 2014.

[7] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In Computer Aided Verification - 25th International Conference, CAV, pages
258–263, 2013.

[8] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. HyComp: An SMT-
based model checker for hybrid systems. In Tools and Algorithms for the Construction and Analysis
of Systems - 21st International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings, pages 52–67, 2015.

[9] Liyun Dai, Ting Gan, Bican Xia, and Naijun Zhan. Barrier certificates revisited. CoRR,
abs/1310.6481, 2013.

[10] Raymond A. DeCarlo, Stanis law H. Żak, and Gregory P. Matthews. Variable structure control of
nonlinear multivariable systems: a tutorial. Proceedings of the IEEE, 76(3):212–232, 1988.

[11] A Djaballah, A. Chapoutot, M. Kieffer, and O Bouissou. Construction of Parametric Barrier
Functions for Dynamical Systems using Interval Analysis. ArXiv e-prints, June 2015.

[12] Freddy Dumortier, Jaume Llibre, and Joan C. Artés. Qualitative Theory of Planar Differential
Systems. Springer, 2006.

[13] Goran Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In HSCC, pages
258–273. Springer, 2005.

[14] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable Verification
of Hybrid Systems. In Shaz Qadeer Ganesh Gopalakrishnan, editor, Proc. 23rd International
Conference on Computer Aided Verification (CAV), LNCS. Springer, 2011.

[15] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. KeYmaera X:
An axiomatic tactical theorem prover for hybrid systems. In Amy P. Felty and Aart Middeldorp,
editors, CADE, LNCS. Springer, 2015.

[16] Ting Gan, Mingshuai Chen, Liyun Dai, Bican Xia, and Naijun Zhan. Decidability of the reacha-
bility for a family of linear vector fields. In Automated Technology for Verification and Analysis -
13th International Symposium, ATVA 2015, Shanghai, China, October 12-15, 2015, Proceedings,
pages 482–499, 2015.

[17] Khalil Ghorbal and André Platzer. Characterizing algebraic invariants by differential radical
invariants. In Erika Ábrahám and Klaus Havelund, editors, TACAS, volume 8413, pages 279–294.
Springer, 2014.

[18] Jack K. Hale and Joseph P. LaSalle. Differential equations: Linearity vs. nonlinearity. SIAM
Review, 5(3):249–272, July 1963.

[19] Fabian Immler. Verified reachability analysis of continuous systems. In Tools and Algorithms for
the Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, pages 37–51, 2015.

[20] Soonho Kong, Sicun Gao, Wei Chen, and Edmund M. Clarke. dreach: δ-reachability analysis
for hybrid systems. In Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
pages 200–205, 2015.

[21] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. Symbolic reachability computation for
families of linear vector fields. J. Symb. Comput., 32(3):231–253, 2001.

[22] Jiang Liu, Jidong Lv, Zhao Quan, Naijun Zhan, Hengjun Zhao, Chaochen Zhou, and Liang Zou. A
calculus for hybrid CSP. In Kazunori Ueda, editor, Programming Languages and Systems, volume

8

Safety Verification Benchnmarks Sogokon, Johnson, Ghorbal

6461 of Lecture Notes in Computer Science, pages 1–15. Springer Berlin Heidelberg, 2010.

[23] Jiang Liu, Naijun Zhan, and Hengjun Zhao. Computing semi-algebraic invariants for polyno-
mial dynamical systems. In Proceedings of the ninth ACM international conference on Embedded
software, EMSOFT ’11, pages 97–106, New York, NY, USA, 2011. ACM.

[24] Jiang Liu, Naijun Zhan, Hengjun Zhao, and Liang Zou. Abstraction of elementary hybrid systems
by variable transformation. In FM 2015: Formal Methods - 20th International Symposium, Oslo,
Norway, June 24-26, 2015, Proceedings, pages 360–377, 2015.

[25] Nadir Matringe, ArnaldoVieira Moura, and Rachid Rebiha. Generating invariants for non-linear
hybrid systems by linear algebraic methods. In Radhia Cousot and Matthieu Martel, editors,
Static Analysis, volume 6337 of Lecture Notes in Computer Science, pages 373–389. Springer
Berlin Heidelberg, 2011.

[26] Nedialko S. Nedialkov. Interval Tools for ODEs and DAEs. In 12th GAMM - IMACS In-
ternational Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics
(SCAN), pages 4–4, Sept 2006.

[27] André Platzer. Differential-algebraic dynamic logic for differential-algebraic programs. J. Log.
Comput., 20(1):309–352, 2010.

[28] André Platzer and Edmund M. Clarke. Computing differential invariants of hybrid systems as
fixedpoints. In Computer Aided Verification, 20th International Conference, CAV 2008, Princeton,
NJ, USA, July 7-14, 2008, Proceedings, pages 176–189, 2008.

[29] André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover for hybrid systems.
In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, IJCAR, volume 5195 of
LNCS, pages 171–178. Springer, 2008.

[30] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier certificates.
In Rajeev Alur and GeorgeJ. Pappas, editors, Hybrid Systems: Computation and Control, volume
2993 of Lecture Notes in Computer Science, pages 477–492. Springer Berlin Heidelberg, 2004.

[31] Stefan Ratschan and Zhikun She. HSolver. http://hsolver.sourceforge.net/, 2004. Accessed:
2016-02-15.

[32] Stefan Ratschan and Zhikun She. Safety verification of hybrid systems by constraint propagation-
based abstraction refinement. ACM Transactions on Embedded Computing Systems (TECS),
6(1):8, 2007.

[33] Sriram Sankaranarayanan. Automatic invariant generation for hybrid systems using ideal fixed
points. In Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation
and Control, HSCC ’10, pages 221–230, New York, NY, USA, 2010. ACM.

[34] Andrew Sogokon, Khalil Ghorbal, Paul B. Jackson, and André Platzer. A method for invariant
generation for polynomial continuous systems. In Barbara Jobstmann and K. Rustan M. Leino,
editors, Verification, Model Checking, and Abstract Interpretation - 17th International Conference,
VMCAI 2016, St. Petersburg, Florida, USA, January 17-19, 2016. Proceedings, volume 9583 of
LNCS. Springer, 2016.

[35] Ashish Tiwari. Generating box invariants. In Magnus Egerstedt and Bud Mishra, editors, Hybrid
Systems: Computation and Control, volume 4981 of Lecture Notes in Computer Science, pages
658–661. Springer Berlin Heidelberg, 2008.

[36] Hoang-Dung Tran, Luan Viet Nguyen, and Taylor T. Johnson. Benchmark: A nonlinear reacha-
bility analysis test set from numerical analysis. In Applied Verification for Continuous and Hybrid
Systems Workshop, Seattle, Washington, April 2015.

[37] Hengjun Zhao, Naijun Zhan, and Deepak Kapur. Synthesizing switching controllers for hybrid
systems by generating invariants. In Theories of Programming and Formal Methods, pages 354–
373, 2013.

9

http://hsolver.sourceforge.net/

	Introduction
	Benchmarks
	Problem format

	Challenges
	Outlook

